Tampilkan postingan dengan label engineering. Tampilkan semua postingan
Tampilkan postingan dengan label engineering. Tampilkan semua postingan

Kamis, 24 Maret 2011

Cara kerja motor 4-tak

Mengapa mesin disebut 4 tak, karena memang ada 4 langkah. Berikut adalah detail dari setiap proses. Untuk memudahkannya, maka setting email anda ke HTML sehingga gambar akan terlihat berurutan. Gambar diambil dari website www.howstuffworks.com/engine.htm. Pada website ini, gambar terlihat bergerak. Tetapi untuk memudahkan, gambar sengaja diset per langkah.
4-stroke-engine
1. Intake
Disebut langkah intake karena langkah pertama adalah menghisap melalui piston dari karburator. Pasokan bahan bakar tidak cukup hanya dari semprotan karburator. Cara kerjanya adalah sbb. Piston pertama kali berada di posisi atas (atau disebut Titik Mati Atas). Lalu piston menghisap bahan bakar yang sudah disetting/dicampur antara bensin dan udara di karburator. Piston lalu mundur menghisap bahan bakar. Untuk membuka, diperlukan klep atau valve inlet yang akan membuka pada saat piston turun/menghisap ke arah bawah.

Gerakan valve atau inlet diatur oleh camshaft secara mekanis. Yakni, camshaft mengatur besaran bukaan klep dengan cara menekan tuas klep. Camshaft sendiri digerakan oleh rantai keteng yang disambungkan antara camshaft ke crankshaft. Untuk detilnya, lihat gambar berikut.

Perhatikan bahwa A adalah Intake Valve (klep masuk bahan bakar) dan klep ini ditekan (membuka) karena I (camshaft) menekan valve A. Dengan demikian, pada saat piston turun, maka A terbuka sekaligus bahan bakar ditarik masuk ke ruang bakar. A akan menutup sampai batas tertentu sebelum langkah kedua : kompresi. Rantai keteng tidak terlihat karena akan sulit digambarkan di atas, tetapi crankshaft (P) terhubung dengan camshaft (I). Beberapa mobil Eropa seperti Mercedez menggunakan rantai sebagai penghubung antara crankshaft dan camshaft, tetapi umumnya di mobil Jepang menggunakan belt yang kita kenal sebagai timing belt.

2. Kompresi
Langkah ini adalah lanjutan dari langkah di atas. Setelah piston mencapai titik terbawah di tahapan intake, lalu valve intake tertutup, dan dilakukan proses kompresi. Yakni, bahan bakar yang sudah ada di ruang bakar dimampatkan. Ruangan sudah tertutup rapat karena kedua valve (intake dan exhaust) tertutup. Proses ini terus berjalan sampai langkah berikut yakni meledaknya busi di langkah ke 3.

3. Combustion (Pembakaran)
Tahap berikut adalah busi pada titik tertentu akan meledak setelah PISTON BERGERAK MENCAPAI TITIK MATI ATAS DAN MUNDUR BEBERAPA DERAJAT. Jadi, busi tidak meledak pada saat piston di titik paling atas (disebut titik 0 derajat), tetapi piston mundur dulu, baru meledak. Hal ini karena untuk menghindari adanya energi yang terbuang sia-sia karena pada saat piston di titik mati atas, masih ada energi laten (yang tersimpan akibat dorongan proses kompresi). Jika pada titik 0 derajat busi meledak, bisa jadi piston mundur tetapi mengengkol crankshaft ke arah belakang (motor mundur ke belakang, bukan memutar roda ke depan). Setelah proses pembakaran, maka piston memiliki energi untuk mendorong crankshaft yang nantinya akan dialirkan melalui gearbox dan sproket, rantai, dan terakhir ke roda.

4. Exhaust (Pembuangan)
Langkah terakhir ini dilakukan setelah pembakaran. Piston akibat pembakaran akan terdorong hingga ke titik yang paling bawah, atau disebut Titik Mati Bawah. Setelah itu, piston akan mendorong ke depan dan klep exhaust membuka sementara klep intake tertutup. Oleh karena itu, maka gas buang akan terdorong masuk ke lubang Exhaust Port (atau kita bilang lubang sambungan ke knalpot). Dengan demikian, maka kita bisa membuang semua sisa gas buang akibat pembakaran. Dan setelah bersih kembali, lalu kita akan masuk lagi mengulangi langkah ke 1 lagi.




Sumber : disini

Senin, 03 Januari 2011

Jalan Jalan Ke Pabrik Kapal Selam NukLir Milik Amerika

BAE Systems Submarine Solusi adalah anak perusahaan yang sepenuhnya dimiliki oleh BAE Systems, berbasis di Barrow-in-Furness, Cumbria, dan bertanggung jawab untuk pengembangan dan produksi kapal selam.Pabrik Ini mengoperasikan salah satu Kapal yang hanya ada sedikit di dunia yang mampu membangun kapal selam nuklir, yang dahulu telah menciptakan kapal selam Angkatan Laut Royal bertenaga nuklir sejak komisioning HMS Dreadnaught pada tahun 1963 .

Galangan kapal Barrow-in-Furness juga telah membangun kapal selam sejak Belanda pertama kali dengan Royal Navy pada tahun 1903.Perusahaan ini sedang membangun kapal selam kelas Astute, generasi baru serangan kapal selam nuklir (SSN) untuk Royal Navy, yang pertama diluncurkan pada tanggal 8 Juni 2007

kita lihat beberapa gambar berikut untuk lebih jelasnya seperti apa perakitan kapal di galangan kapal barrow-in-furness ini...





























sumber : disini

Selasa, 14 Desember 2010

Menghitung berat benda tanpa timbangan

Untuk mengetahui berat benda ada 2 cara yang bisa dilakukan yaitu:
1. Menimbang langsung benda tersebut ke timbangan
2. Dengan menggunakan perhitungan matematis.

Cara yang pertama tentu saja lebih mudah karena tinggal membawa benda tersebut ke sebuah timbangan maka akan diketahui berapa berat benda tersebut.
Namun terkadang kita mengalami kesulitan misalnya pada saat itu tidak tersedia timbangan, atau timbangan yang ada mempunyai skala yang lebih kecil, belum lagi faktor faktor lainnya seperti kotor, efisiensi dan lain-lain.

Pada umumnya para estimator menggunakan cara kedua dalam menghitung berat benda dengan menggunakan perhitungan matematis.
Untuk menghitung berat benda secara matematis kita harus tahu berat jenis benda tersebut, misalnya untuk benda berupa besi memiliki berat jenis 7,86.
Berikut ini beberapa contoh berat jenis benda:
Nama Benda Berat Jenis
Besi (Fe) 7,86
Seng (Zn) 7,12
Aluminium (Al) 2,7
Emas (Hg) 13,55
Tembaga (Cu) 8,93
Platina (Pt) 21,4
Timah (Pb) 11,34
Nikel (Ni) 8,85
Stainless Steel (SUS) 7,9
Perunggu 8,8
   
Cara menghitung berat benda berbentuk persegi.
Untuk menghitung berat benda yang berbentuk persegi maka menggunakan rumus sebagai berikut:
Kg =
Panjang (L)
x
Lebar (W)
x
Tebal (T)
x
Berat_Jenis
1.000.000
Satuan dalam milimeter.
Contoh:
Sebuah Besi dengan panjang 1000mm, lebar 200mm dan tebal 3mm. Berapa berat besi tersebut?
Kg =
1000
x
200
x
3
x
7,86
1.000.000
  =
4,72
           
Cara menghitung berat benda berbentuk lingkaran.
Untuk menghitung berat benda berbentuk lingkaran pada dasarnya sama saja, bedanya adalah anda harus menghitung keliling lingkaran benda tersebut dengan menggunakan rumus lingkaran 2 x Phi x r atau Phi x d.
Semoga artikel ini bermanfaat.










Sumber : disini

Jumat, 03 Desember 2010

Cara Kerja Kapal Selam

Kapal selam merupakan sebuah wahana yang unik karena bisa mengapung dan menyelam di air sesuai kebutuhan, pembuatan kapal selam pertama kali di gunakan untuk keperluan perang dan masih berbentuk sangat sederhana ( turtle).

Namun pada masa sekarang selain untuk perang, kapal selam juga di gunakan sebagai wahana rekreasi dan juga penelitian bawah air (ocean research).

Ada pertanyaan menarik dari seorang teman saya beberapa waktu lalu, yaitu bagaimana cara sebuah kapal selam yang beratnya berton ton bisa menyelam.

Pertanyaan menarik. Kalau masalah mengapung kita pasti tahu bahwa Hukum Archimedes (+250 sebelum Masehi) adalah jawabannya “Jika suatu benda dicelupkan ke dalam sesuatu zat cair, maka benda itu akan mendapat tekanan keatas yang sama besarnya dengan beratnya zat cair yang terdesak oleh benda tersebut”.

Dan itu berlaku pada setiap kapal konvensional. Sedangkan untuk menyelam kapal selam memakai Hukum Boyle dan Hukum Boayancy (pengapungan).

Kapal selam di desain memiliki tanki balast (trim), Tanki balast berfungsi menyimpan udara dan air, letaknya berbeda beda tergantung biro desain yang merancangnya.Untuk awalnya saya akan memberi visualisasi gambar potongan kapal selam seperti yang terlihat di bawah ini:


Gambar atas merupakan gambar potongan sebuah kapal selam..dan dibawah ini adalah gambar saat posisi mengapung :

Sedangkan dibawah ini adalah gambar saat posisi kapal selam melakukan penyelaman :

Sedikit tambahan, kapal selam sekarang mulai di lengkapi dengan berbagai macam persenjataan, yang awalnya hanya sebuah skrup untuk melubangi kapal musuh, sekarang bisa di muati rudal jelajah maupun rudal antar benua yang berhulu ledak nuklir. Yang pada mulanya hanya cukup untuk satu orang hingga sekarang dapat memuat ratusan personel.

Kapal selam lama menggunakan diesel sebagai penggerak utama sehingga kemampuan bersembuyi di air sangat terbatas karena harus sering muncul ke permukaan untuk pengisian kembali bahan bakar, kini kapal selam nuklir lebih efisien karena sangat hemat dan menekan biaya operasional, karena dalam sekali charge kapal selam mampu berlayar bertahun tahun tanpa perlu mengisi bahan bakar.

Namun itu bukan berarti tidak beresiko. Kejadian bocornya radiasi pada kapal K-19 Rusia beberapa dekade lalu, menunjukkan kalau perlu keamanan extra untuk mengoperasikan sebuah kapal selam nuklir, selain merupakan sebuah kebanggaan tersendiri bagi pihak Angkatan Laut bisa mengoperasikan nya.



Sedikit gambaran tentang kapal selam lihat gambar dibawah ini...

Klik gambarnya untuk memperbesar ukuran gambar....

semoga info ini bermanfaat...











Sumber : disini

Selasa, 26 Oktober 2010

Teori Gas Turbine Engine

Gas-turbine engine adalah suatu alat yang memanfaatkan gas sebagai fluida untuk memutar turbin dengan pembakaran internal. Didalam turbin gas energi kinetik dikonversikan menjadi energi mekanik melalui udara bertekanan yang memutar roda turbin sehingga menghasilkan daya. Sistem turbin gas yang paling sederhana terdiri dari tiga komponen yaitu kompresor, ruang bakar dan turbin gas.
Gas Turbine Engine
Gas Turbine Engine

Prinsip Kerja Sistem Turbin Gas (Gas-Turbine Engine)

Udara masuk kedalam kompresor melalui saluran masuk udara (inlet). Kompresor berfungsi untuk menghisap dan menaikkan tekanan udara tersebut, sehingga temperatur udara juga meningkat. Kemudian udara bertekanan ini masuk kedalam ruang bakar. Di dalam ruang bakar dilakukan proses pembakaran dengan cara mencampurkan udara bertekanan dan bahan bakar. Proses pembakaran tersebut berlangsung dalam keadaan tekanan konstan sehingga dapat dikatakan ruang bakar hanya untuk menaikkan temperatur. Gas hasil pembakaran tersebut dialirkan ke turbin gas melalui suatu nozel yang berfungsi untuk mengarahkan aliran tersebut ke sudu-sudu turbin. Daya yang dihasilkan oleh turbin gas tersebut digunakan untuk memutar kompresornya sendiri dan memutar beban lainnya seperti generator listrik, dll. Setelah melewati turbin ini gas tersebut akan dibuang keluar melalui saluran buang (exhaust).
Secara umum proses yang terjadi pada suatu sistem turbin gas adalah sebagai berikut:
  1. Pemampatan (compression) udara di hisap dan dimampatkan
  2. Pembakaran (combustion) bahan bakar dicampurkan ke dalam ruang bakar dengan udara kemudian di bakar.
  3. Pemuaian (expansion) gas hasil pembakaran memuai dan mengalir ke luar melalui nozel (nozzle).
  4. Pembuangan gas (exhaust) gas hasil pembakaran dikeluarkan lewat saluran pembuangan.
Pada kenyataannya, tidak ada proses yang selalu ideal, tetap terjadi kerugiankerugian yang dapat menyebabkan turunnya daya yang dihasilkan oleh turbin gas dan berakibat pada menurunnya performa turbin gas itu sendiri. Kerugian-kerugian tersebut dapat terjadi pada ketiga komponen sistem turbin gas. Sebab-sebab terjadinya kerugian antara lain:
  • Adanya gesekan fluida yang menyebabkan terjadinya kerugian tekanan (pressure losses) di ruang bakar.
  • Adanya kerja yang berlebih waktu proses kompresi yang menyebabkan terjadinya gesekan antara bantalan turbin dengan angin.
  • Berubahnya nilai Cp dari fluida kerja akibat terjadinya perubahan temperatur dan perubahan komposisi kimia dari fluida kerja.
  • Adanya mechanical loss, dsb.

Klasifikasi Turbin Gas

Turbin gas dapat dibedakan berdasarkan siklusnya, kontruksi poros dan lainnya. Menurut siklusnya turbin gas terdiri dari:
  • Turbin gas siklus tertutup (Close cycle)
  • Turbin gas siklus terbuka (Open cycle)
Perbedaan dari kedua tipe ini adalah berdasarkan siklus fluida kerja. Pada turbin gas siklus terbuka, akhir ekspansi fluida kerjanya langsung dibuang ke udara atmosfir, sedangkan untuk siklus tertutup akhir ekspansi fluida kerjanya didinginkan untuk kembali ke dalam proses awal.
Dalam industri turbin gas umumnya diklasifikasikan dalam dua jenis yaitu :
  1. Turbin Gas Poros Tunggal (Single Shaft)
    Turbin jenis ini digunakan untuk menggerakkan generator listrik yang menghasilkan energi listrik untuk keperluan proses di industri.
  2. Turbin Gas Poros Ganda (Double Shaft)
    Turbin jenis ini merupakan turbin gas yang terdiri dari turbin bertekanan tinggi dan turbin bertekanan rendah, dimana turbin gas ini digunakan untuk menggerakkan beban yang berubah seperti kompresor pada unit proses.

Siklus-Siklus Turbin Gas

Tiga siklus turbin gas yang dikenal secara umum yaitu:
  1. Siklus Ericson
    Merupakan siklus mesin kalor yang dapat balik (reversible) yang terdiri dari dua proses isotermis dapat balik (reversible isotermic) dan dua proses isobarik dapat balik (reversible isobaric). Proses perpindahan panas pada proses isobarik berlangsung di dalam komponen siklus internal (regenerator), dimana effisiensi termalnya adalah : hth = 1 – T1/Th, dimana T1 = temperatur buang dan Th = temperatur panas.
  2. Siklus Stirling
    Merupakan siklus mesin kalor dapat balik, yang terdiri dari dua proses isotermis dapat balik (isotermal reversible) dengan volume tetap (isokhorik). Efisiensi termalnya sama dengan efisiensi termal pada siklus Ericson.
  3. Siklus Brayton
    Siklus ini merupakan siklus daya termodinamika ideal untuk turbin gas, sehingga saat ini siklus ini yang sangat populer digunakan oleh pembuat mesin turbine atau manufacturer dalam analisa untuk performance upgrading. Siklus Brayton ini terdiri dari proses kompresi isentropik yang diakhiri dengan proses pelepasan panas pada tekanan konstan. Pada siklus Bryton tiap-tiap keadaan proses dapat dianalisa secara berikut:
    brayton_cycle Proses 1 ke 2 (kompresi isentropik). Kerja yang dibutuhkan oleh kompresor: Wc = ma (h2 – h1). Proses 2 ke 3, pemasukan bahan bakar pada tekanan konstan. Jumlah kalor yang dihasilkan: Qa = (ma + mf) (h3 – h2). Proses 3 ke 4, ekspansi isentropik didalam turbin. Daya yang dibutuhkan turbin: WT = (ma + mf) (h3 – h4). Proses 4 ke 1, pembuangan panas pada tekanan konstan ke udara. Jumlah kalor yang dilepas: QR = (ma + mf) (h4 – h1)

Perkembangan Gas Turbin

Disain pertama turbin gas dibuat oleh John Wilkins seorang Inggris pada tahun 1791. Sistem tersebut bekerja dengan gas hasil pembakaran batu bara, kayu atau minyak, kompresornya digerakkan oleh turbin dengan perantaraan rantai roda gigi. Pada tahun 1872, Dr. F. Stolze merancang sistem turbin gas yang menggunakan kompresor aksial bertingkat ganda yang digerakkan langsung oleh turbin reaksi tingkat ganda. Tahun 1908, sesuai dengan konsepsi H. Holzworth, dibuat suatu sistem turbin gas yang mencoba menggunakan proses pembakaran pada volume konstan. Tetapi usaha tersebut dihentikan karena terbentur pada masalah konstruksi ruang bakar dan tekanan gas pembakaran yang berubah sesuai beban. Tahun 1904, “Societe des Turbomoteurs” di Paris membuat suatu sistem turbin gas yang konstruksinya berdasarkan disain Armengaud dan Lemate yang menggunakan bahan bakar cair. Temperatur gas pembakaran yang masuk sekitar 450 C dengan tekanan 45 atm dan kompresornya langsung digerakkan oleh turbin.
Selanjutnya, pada tahun 1935 sistem turbin gas mengalami perkembangan yang pesat dimana diperoleh efisiensi sebesar kurang lebih 15%. Pesawat pancar gas yang pertama diselesaikan oleh “British Thomson Houston Co” pada tahun 1937 sesuai dengan konsepsi Frank Whittle (tahun 1930).

Komponen Turbin Gas

Turbin gas tersusun atas komponen-komponen utama seperti air inlet section, compressor section, combustion section, turbine section, dan exhaust section. Sedangkan komponen pendukung turbin gas adalah starting equipment, lube-oil system, cooling system, dan beberapa komponen pendukung lainnya. Berikut ini penjelasan tentang komponen utama turbn gas:
  1. Air Inlet Section. Berfungsi untuk menyaring kotoran dan debu yang terbawa dalam udara sebelum masuk ke kompresor. Bagian ini terdiri dari:
    1. Air Inlet Housing, merupakan tempat udara masuk dimana didalamnya terdapat peralatan pembersih udara.
    2. Inertia Separator, berfungsi untuk membersihkan debu-debu atau partikel yang terbawa bersama udara masuk.
    3. Pre-Filter, merupakan penyaringan udara awal yang dipasang pada inlet house.
    4. Main Filter, merupakan penyaring utama yang terdapat pada bagian dalam inlet house, udara yang telah melewati penyaring ini masuk ke dalam kompresor aksial.
    5. Inlet Bellmouth, berfungsi untuk membagi udara agar merata pada saat memasuki ruang kompresor.
    6. Inlet Guide Vane, merupakan blade yang berfungsi sebagai pengatur jumlah udara yang masuk agar sesuai dengan yang diperlukan
  2. Compressor Section. Komponen utama pada bagian ini adalah aksial flow compressor, berfungsi untuk mengkompresikan udara yang berasal dari inlet air section hingga bertekanan tinggi sehingga pada saat terjadi pembakaran dapat menghasilkan gas panas berkecepatan tinggi yang dapat menimbulkan daya output turbin yang besar. Aksial flow compressor terdiri dari dua bagian yaitu:
    1. Compressor Rotor Assembly. Merupakan bagian dari kompresor aksial yang berputar pada porosnya. Rotor ini memiliki 17 tingkat sudu yang mengompresikan aliran udara secara aksial dari 1 atm menjadi 17 kalinya sehingga diperoleh udara yang bertekanan tinggi. Bagian ini tersusun dari wheels, stubshaft, tie bolt dan sudu-sudu yang disusun kosentris di sekeliling sumbu rotor.
    2. Compressor Stator. Merupakan bagian dari casing gas turbin yang terdiri dari:
      1. Inlet Casing, merupakan bagian dari casing yang mengarahkan udara masuk ke inlet bellmouth dan selanjutnya masuk ke inlet guide vane.
      2. Forward Compressor Casing, bagian casing yang didalamnya terdapat empat stage kompresor blade.
      3. Aft Casing, bagian casing yang didalamnya terdapat compressor blade tingkat 5-10.
      4. Discharge Casing, merupakan bagian casing yang berfungsi sebagai tempat keluarnya udara yang telah dikompresi.
  3. Combustion Section. Pada bagian ini terjadi proses pembakaran antara bahan bakar dengan fluida kerja yang berupa udara bertekanan tinggi dan bersuhu tinggi. Hasil pembakaran ini berupa energi panas yang diubah menjadi energi kinetik dengan mengarahkan udara panas tersebut ke transition pieces yang juga berfungsi sebagai nozzle. Fungsi dari keseluruhan sistem adalah untuk mensuplai energi panas ke siklus turbin. Sistem pembakaran ini terdiri dari komponen-komponen berikut yang jumlahnya bervariasi tergantung besar frame dan penggunaan turbin gas. Komponen-komponen itu adalah :
    1. Combustion Chamber, berfungsi sebagai tempat terjadinya pencampuran antara udara yang telah dikompresi dengan bahan bakar yang masuk.
    2. Combustion Liners, terdapat didalam combustion chamber yang berfungsi sebagai tempat berlangsungnya pembakaran.
    3. Fuel Nozzle, berfungsi sebagai tempat masuknya bahan bakar ke dalam combustion liner.
    4. Ignitors (Spark Plug), berfungsi untuk memercikkan bunga api ke dalam combustion chamber sehingga campuran bahan bakar dan udara dapat terbakar.
    5. Transition Fieces, berfungsi untuk mengarahkan dan membentuk aliran gas panas agar sesuai dengan ukuran nozzle dan sudu-sudu turbin gas.
    6. Cross Fire Tubes, berfungsi untuk meratakan nyala api pada semua combustion chamber.
    7. Flame Detector, merupakan alat yang dipasang untuk mendeteksi proses pembakaran terjadi.
  4. Turbin Section. Turbin section merupakan tempat terjadinya konversi energi kinetik menjadi energi mekanik yang digunakan sebagai penggerak compresor aksial dan perlengkapan lainnya. Dari daya total yang dihasilkan kira-kira 60 % digunakan untuk memutar kompresornya sendiri, dan sisanya digunakan untuk kerja yang dibutuhkan.
    Komponen-komponen pada turbin section adalah sebagai berikut :
    1. Turbin Rotor Case
    2. First Stage Nozzle, yang berfungsi untuk mengarahkan gas panas ke first stage turbine wheel.
    3. First Stage Turbine Wheel, berfungsi untuk mengkonversikan energi kinetik dari aliran udara yang berkecepatan tinggi menjadi energi mekanik berupa putaran rotor.
    4. Second Stage Nozzle dan Diafragma, berfungsi untuk mengatur aliran gas panas ke second stage turbine wheel, sedangkan diafragma berfungsi untuk memisahkan kedua turbin wheel.
    5. Second Stage Turbine, berfungsi untuk memanfaatkan energi kinetik yang masih cukup besar dari first stage turbine untuk menghasilkan kecepatan putar rotor yang lebih besar.
  5. Exhaust Section. Exhaust section adalah bagian akhir turbin gas yang berfungsi sebagai saluran pembuangan gas panas sisa yang keluar dari turbin gas. Exhaust section terdiri dari beberapa bagian yaitu : (1) Exhaust Frame Assembly, dan (2)Exhaust gas keluar dari turbin gas melalui exhaust diffuser pada exhaust frame assembly, lalu mengalir ke exhaust plenum dan kemudian didifusikan dan dibuang ke atmosfir melalui exhaust stack, sebelum dibuang ke atmosfir gas panas sisa tersebut diukur dengan exhaust thermocouple dimana hasil pengukuran ini digunakan juga untuk data pengontrolan temperatur dan proteksi temperatur trip. Pada exhaust area terdapat 18 buah termokopel yaitu, 12 buah untuk temperatur kontrol dan 6 buah untuk temperatur trip.
Gas Turbine Engine
Gas Turbine Engine
Adapun beberapa komponen penunjang dalam sistem turbin gas adalah sebagai berikut:
  1. Starting Equipment. Berfungsi untuk melakukan start up sebelum turbin bekerja. Jenis-jenis starting equipment yang digunakan di unit-unit turbin gas pada umumnya
    adalah :
    1. Diesel Engine, (PG –9001A/B)
    2. Induction Motor, (PG-9001C/H dan KGT 4X01, 4X02 dan 4X03)
    3. Gas Expansion Turbine (Starting Turbine)
  2. Coupling dan Accessory Gear. Berfungsi untuk memindahkan daya dan putaran dari poros yang bergerak ke poros yang akan digerakkan. Ada tiga jenis coupling yang digunakan, yaitu:
    1. Jaw Cluth, menghubungkan starting turbine dengan accessory gear dan HP turbin rotor.
    2. Accessory Gear Coupling, menghubungkan accessory gear dengan HP turbin rotor.
    3. Load Coupling, menghubungkan LP turbin rotor dengan kompressor beban.
  3. Fuel System. Bahan bakar yang digunakan berasal dari fuel gas system dengan tekanan sekitar 15 kg/cm2. Fuel gas yang digunakan sebagai bahan bakar harus bebas dari cairan kondensat dan partikel-partikel padat. Untuk mendapatkan kondisi tersebut diatas maka sistem ini dilengkapi dengan knock out drum yang berfungsi untuk memisahkan cairan-cairan yang masih terdapat pada fuel gas.
  4. Lube Oil System. Lube oil system berfungsi untuk melakukan pelumasan secara kontinu pada setiap komponen sistem turbin gas. Lube oil disirkulasikan pada bagian-bagian utama turbin gas dan trush bearing juga untuk accessory gear dan yang lainnya. Lube oil system terdiri dari:
    1. Oil Tank (Lube Oil Reservoir)
    2. Oil Quantity
    3. Pompa
    4. Filter System
    5. Valving System
    6. Piping System
    7. Instrumen untuk oil
    Pada turbin gas terdapat tiga buah pompa yang digunakan untuk mensuplai lube oil guna keperluan lubrikasi, yaitu:
    1. Main Lube Oil Pump, merupakan pompa utama yang digerakkan oleh HP shaft pada gear box yang mengatur tekanan discharge lube oil.
    2. Auxilary Lube Oil Pump, merupakan pompa lube oil yang digerakkan oleh tenaga listrik, beroperasi apabila tekanan dari main pump turun.
    3. Emergency Lube Oil Pump, merupakan pompa yang beroperasi jika kedua pompa diatas tidak mampu menyediakan lube oil.
  5. Cooling System. Sistem pendingin yang digunakan pada turbin gas adalah air dan udara. Udara dipakai untuk mendinginkan berbagai komponen pada section dan bearing. Komponen-komponen utama dari cooling system adalah:
    1. Off base Water Cooling Unit
    2. Lube Oil Cooler
    3. Main Cooling Water Pump
    4. Temperatur Regulation Valve
    5. Auxilary Water Pump
    6. Low Cooling Water Pressure Swich

Maintenance Turbin Gas

Maintenance adalah perawatan untuk mencegah hal-hal yang tidak diinginkan seperti kerusakan terlalu cepat terhadap semua peralatan di pabrik, baik yang sedang beroperasi maupun yang berfungsi sebagai suku cadang. Kerusakan yang timbul biasanya terjadi karena keausan dan ketuaan akibat pengoperasian yang terus-menerus, dan juga akibat langkah pengoperasian yang salah.
Maintenance pada turbine gas selalu tergantung dari faktor-faktor perasional dengan kondisi yang berbeda disetiap wilayah, karena operasional turbine gas sangat tergantung dari kondisi daerah operasional. Semua pabrik pembuat turbine gas telah menetapkan suatu ketetapan yang aman dalam pengoperasian sehingga turbine selalu dalambatas kondisi aman dan tepat waktu untuk melakukan maintenance.
Secara umum maintenance dapat dibagi dalam beberapa bagian, diantaranya adalah:
  1. Preventive Maintenance. Suatu kegiatan perawatan yang direncanakan baik itu secara rutin maupun periodik, karena apabila perawatan dilakukan tepat pada waktunya akan mengurangi down time dari peralatan. Preventive maintenance dibagi menjadi:
    • Running Maintenance. Suatu kegiatan perawatan yang dilakukan hanya bertujuan untuk memperbaiki equipment yang rusak saja dalam satu unit. Unit produksi tetap melakukan kegiatan.
    • Turning Around Maintenance. Perawatan terhadap peralatan yang sengaja dihentikan pengoperasiannya.
  2. Repair Maintenance. Perawatan yang dilakukan terhadap peralatan yang tidak kritis, atau disebut juga peralatan-peralatan yang tidak mengganggu jalannya operasi.
  3. Predictive Maintenance. Kegiatan monitor, menguji, dan mengukur peralatan-peralatan yang beroperasi dengan menentukan perubahan yang terjadi pada bagian utama, apakah peralatan tersebut berjalan dengan normal atau tidak.
  4. Corrective Maintenance. Perawatan yang dilakukan dengan memperbaiki perubahan kecil yang terjadi dalam disain, serta menambahkan komponen-komponen yang sesuai dan juga menambahkan material-material yang cocok.
  5. Break Down Maintenance. Kegiatan perawatan yang dilakukan setelah terjadi kerusakan atau kelainan pada peralatan sehingga tidak dapat berfungsi seperti biasanya.
  6. Modification Maintenance. Pekerjaan yang berhubungan dengan disain suatu peralatan atau unit. Modifikasi bertujuan menambah kehandalan peralatan atau menambah tingkat produksi dan kualitas pekerjaan.
  7. Shut Down Maintenance. Kegiatan perawatan yang dilakukan terhadap peralatan yang sengaja dihentikan pengoperasiannya.




Sumber : disini

4 gaya yang mempengaruhi pesawat

Hal yang menarik dari kendaraan yang bernama pesawat terbang adalah terbang ke atas melawan gravitasi bumi. Ini di sebut lift atau gaya angkat. Untuk kesederhanaan tulisan, maka selanjutnya kata lift dan istilah-istilah lain hanya diterjemahkan di awal tulisan.
Pembahasan dalam aerodinamika ini dibatasi pada pesawat berbaling-baling dan bermesin piston. Aneka kombinasi letak mesin tidak dibahas. Pesawat dengan model seperti ini mempunyai mesin piston yang memutar baling-baling di depan pesawat. Seperti halnya kipas angin, baling-baling ini meniup udara ke belakang dengan kuat sehingga terjadi reaksi dari pesawat itu sendiri untuk bergerak ke depan. Gaya dorong dari baling-baling ini disebut THRUST. Gaya ini bekerja ke depan.
Image
4 forces of flight
Pada waktu bergerak ke depan, udara yang dilewati oleh pesawat menghasilkan gesekan yang menahan gerakan pesawat tersebut. Gaya gesek ini disebut DRAG. Dengan adanya DRAG maka dibutuhkan lebih banyak THRUST untuk menggerakkan pesawat.
Pada waktu pesawat digerakkan ke depan dengan kecepatan tertentu, sayap menghasilkan gaya angkat yang disebut LIFT. LIFT ini bertambah seiring dengan bertambahnya kecepatan pesawat. Tapi jika kecepatan pesawat terus ditambah, maka DRAG yang terjadi akan terlalu besar dan sayap pesawat akan berhenti menghasilkan LIFT.
Gaya yang terakhir adalah gaya yang kita kenal dengan berat, yang dalam tulisan ini selanjutnya disebut WEIGHT.





Sumber : disini

Senin, 25 Oktober 2010

Steam production

kali ini kita akan melihat cara kerja sistem "steam production" dari boiler pada animasi dibawah ini...langsung saja..cekidot...






jika ingin melihat animasi diatas secara penuh silahkan klik disini...

Menggunakan batu bara untuk menciptakan tenaga listrik

Inilah sistematika saat tenaga batu bara dimanfaatkan untuk menciptakan energi listrik...untuk lebih jelasnya silahkan melihat animasi dibawah ini...








Silahkan klik disini jika ingin melhat full screen animasi diatas...

Minggu, 10 Oktober 2010

PEMILIHAN POMPA SENTRIFUGAL BAG 1


Pada saat pemilihan pompa centrifugal, ada beberapa hal yang sangat penting harus kita perhatikan, antara lain :
1. KAPASITAS

Dinyatakan dalam satuan isi per waktu. Misalnya : m3/jam, m3/detik, liter/detik, USGPM dan sebagainya. Yang dimaksudkan dengan kapasitas pada suatu pompa adalah kemampuan pompa tersebut untuk mengalirkan/memindahkan sejumlah cairan/fluida dalam satuan kapasitas.
Kebocoran cairan/fluida pada packing perapat porors atau air balik tidak diperhitungkan sebagai kapasitas pompa.



2. TOTAL HEAD / TEKANAN

Total head di nyatakan dalam satuan jarak. Misalnya : meter, feet dan laian-lain. Tekanan dinyatakan dalam satuan tekanan. Misalnya : kg/cm2, bar, dan lain-lain.
Total head dan tekanan ini sangat penting dan saling berhubungan satu dengan lainnya untuk pemilihan pompa dan dapat dijelaskan sebagai berikut :
Head dari sebuah pompa adalah energi mekanik yang dipakai dan diteruskan ke media yang di tangani, yang berhubungan dengan berat media, dinyatakan dalam satuan panjang. Head ini tidak tergantung dari berat jenis media, dengan kata lain sebuah pompa pompa sentrifugal dapat menimbulkan head yang sama untuk jenis cairan. Tetapi berat jenis media akan menyebabkan tekanan pada pompa tersebut.
Total head dari suatu sistim (Ha) dapat dijelaskan sebagai berikut (lihat gambar 1 dan gambar 2) :




Hgeo : Head statis
Head statis adalah perbedaan tinggi permukaan cairan pada bagian hisap dengan bagian tekan. Jika pipa tekan berada diatas permukaan cairan maka Hgeo di ukur dari garis tengah pipa tersebut.

Hsgeo : Head hisap statis
Head hisap statis adalah perbedaan tinggi permukaan cairan pada bagian hisap denga garis sumbu poros pompa.

Hzgeo : Head tekan statis
Head tekan statis adalah perbedaan tinggi permukaan cairan pada bagian hisap dengan garis sumbu poros pompa.

Pa : Tekanan pada tangki tertutup pada bagian tekan

Pe : Tekanan pada tangki tertutup pada bagian hisap

Va : Kecepatan aliran pada tangki tekan

Ve : Kecepatan aliran pada tangki hisap

EHv : Jumlah semua kerugian tekanan head pada sistim (gesekan pipa, gesekan katup, fitting danlain-lain pada bagian hisap dan bagia tekan).

p : Berat jenis

g : Konstanta grafitasi = 9.81 meter/detik2.

Demikian sistim head (ha) =



Dalam prakteknya perbedaan kecepatan pada tangki bagian hisap dantangki bagian tekan diabaikan sehingga untuk sistim tangki tertutp menjadi =


Dan untuk tangki terbuka menjadi =


3. JENIS DAN DATA-DATA CAIRAN

Jenis dan data cairan sangatlah perlu dalam menentukan pemilihan pompa. Hal ini karena setiap cairan mempunyai berat jenis yang berbeda-beda yang akan berhubungan langsung dengan kebutuhan daya dari penggerak mula. Selain hal tersebut diatas, kit ajuga harus menentukan material dari pompa yang sesuai dengan cairan yang dipompakan terutama untuk cairan yang bersifat korosi. Cairan yang di pompakan juga mempunyai viscositas yang berbeda-beda yang akan mempengaruhi kurva pompa. Makin tinggi viscositas suatu cairan (cairan yang kental/viscous liquid? makan akan mengakibatkan :

a. Kapasitas pompa menurun
b. Total head pompa menurun
c. Effesiensi pompa menurun
d. Daya yang dibutuhkan naik

4. PENGGERAK MULA

Pada dasarnya pompa memerlukan penggerak mula untuk menggerkannya/mengoperasikan. Dalam pemilihan penggerak mula dari pompa tersebut maka keadaan setempat dan tersedianya sumber energi sangat mempengaruhi, dengan kata lain jika suatu daerah tidak terdapat sumber listrik dan tidak memungkinkan untuk diadakan sumber listriknya maka tidaklah mungkin kita memilih motor listrik sebagai penggerak mulanya. Sebagai contoh ditengah perkebunan yang luas maka kita dapat memilih motor diesel sebagai penggerak mulanya.

a. Motor Listrik


b. Motor Diesel
Kecepatan putaran yang sering dipakai adalah berkisar antara : 580 - 3500 rpm.

c. Turbine
Kecepatan putaran yang sering dipakai adalah berkisar antara : 1750 - 8000 rpm.

Perubahan kecepatan putaran pada penggerak mula akan mempengaruhi garis kurva pompa. Jika nilai kapasitas (Q1), total head (H1) dan daya (P1) telah diketahui apda kecepatan putaran (n1), maka nilai baru untuk putaran = n2 adalah sebagai berikut :

Daya yang harus tersedia oleh penggerak mula harus mencukupi/lebih besar dari daya yang di butuhkan oleh pompa.
Daya yang di butuhkan oleh pompa sebagai berikut :



Sumber : disini

Label